Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the field today.
A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; systems on chip, wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.
Selected Topics in RF, Analog and Mixed Signal Circuits and Systems (Tutorials in Circuits and Syste
Catalog Description: This course covers the fundamental circuit and device concepts needed to understand analog integrated circuits. After an overview of the basic properties of semiconductors, the p-n junction and MOS capacitors are described and the MOSFET is modeled as a large-signal device. Two port small-signal amplifiers and their realization using single stage and multistage CMOS building blocks are discussed. Sinusoidal steady-state signals are introduced and the techniques of phasor analysis are developed, including impedance and the magnitude and phase response of linear circuits. The frequency responses of single and multi-stage amplifiers are analyzed. Differential amplifiers are introduced. Units: 4
Catalog Description: Power conversion circuits and techniques. Characterization and design of magnetic devices including transformers, reactors, and electromagnetic machinery. Characteristics of bipolar and MOS power semiconductor devices. Applications to motor control, switching power supplies, lighting, power systems, and other areas as appropriate. Units: 4
Catalog Description: Discrete time signals and systems: Fourier and Z transforms, DFT, 2-dimensional versions. Digital signal processing topics: flow graphs, realizations, FFT, chirp-Z algorithms, Hilbert transform relations, quantization effects, linear prediction. Digital filter design methods: windowing, frequency sampling, S-to-Z methods, frequency-transformation methods, optimization methods, 2-dimensional filter design. Units: 4
Catalog Description: Analysis and design of electronic circuits for communication systems, with an emphasis on integrated circuits for wireless communication systems. Analysis of noise and distortion in amplifiers with application to radio receiver design. Power amplifier design with application to wireless radio transmitters. Radio-frequency mixers, oscillators, phase-locked loops, modulators, and demodulators. Units: 4
Catalog Description: Laboratory exercises exploring a variety of electronic transducers for measuring physical quantities such as temperature, force, displacement, sound, light, ionic potential; the use of circuits for low-level differential amplification and analog signal processing; and the use of microcomputers for digital sampling and display. Lectures cover principles explored in the laboratory exercises; construction, response and signal to noise of electronic transducers and actuators; and design of circuits for sensing and controlling physical quantities. Units: 3
Catalog Description: Laboratory exercises constructing basic interfacing circuits and writing 20-100 line C programs for data acquisition, storage, analysis, display, and control. Use of the IBM PC with microprogrammable digital counter/timer, parallel I/O port, and analog I/O port. Circuit components include anti-aliasing filters, the S/H amplifier, A/D and D/A converters. Exercises include effects of aliasing in periodic sampling, fast Fourier transforms of basic waveforms, the use of the Hanning filter for leakage reduction, Fourier analysis of the human voice, digital filters, and control using Fourier deconvolution. Lectures cover principles explored in the laboratory exercises and design of microcomputer-based systems for data acquisition, analysis, and control. Units: 3
Catalog Description: Laboratory exercises constructing basic interfacing circuits and writing 20-100 line C programs for data acquisition, storage, analysis, display, and control. Use of the IBM PC with microprogrammable digital counter/timer, parallel I/O port. Circuit components include anti-aliasing filters, the S/H amplifier, A/D and D/A converters. Exercises include effects of aliasing in periodic sampling, fast Fourier transforms of basic waveforms, the use of the Hanning filter for leakage reduction, Fourier analysis of the human voice, digital filters, and control using Fourier deconvolution. Lectures cover principles explored in the lab exercises and design of microcomputer-based systems for data acquisitions, analysis and control. Units: 3
Catalog Description: Power conversion circuits and techniques. Characterization and design of magnetic devices including transformers, inductors, and electromagnetic actuators. Characteristics of power semiconductor devices, including power diodes, SCRs, MOSFETs, IGBTs, and emerging wide bandgap devices. Applications to renewable energy systems, high-efficiency lighting, power management in mobile electronics, and electric machine drives. Simulation based laboratory and design project. Units: 4
Catalog Description: The course covers the fundamental techniques for the design and analysis of digital circuits. The goal is to provide a detailed understanding of basic logic synthesis and analysis algorithms, and to enable students to apply this knowledge in the design of digital systems and EDA tools. The course will present combinational circuit optimization (two-level and multi-level synthesis), sequential circuit optimization (state encoding, retiming), timing analysis, testing, and logic verification. Units: 4
Catalog Description: Physical principles and operational characteristics of semiconductor devices. Emphasis is on MOS field-effect transistors and their behaviors dictated by present and probable future technologies. Metal-oxide-semiconductor systems, short-channel and high field effects, device modeling, and impact on analog, digital circuits. Units: 4
Catalog Description: Architectural and circuit level design and analysis of integrated analog-to-digital and digital-to-analog interfaces in modern CMOS and BiCMOS VLSI technology. Analog-digital converters, digital-analog converters, sample/hold amplifiers, continuous and switched-capacitor filters. Low power mixed signal design techniques. Data communications systems including interface circuity. CAD tools for analog design for simulation and synthesis. Units: 3
Catalog Description: Analysis, evaluation and design of present-day integrated circuits for communications application, particularly those for which nonlinear response must be included. MOS, bipolar and BICMOS circuits, audio and video power amplifiers, optimum performance of near-sinusoidal oscillators and frequency-translation circuits. Phase-locked loop ICs, analog multipliers and voltage-controlled oscillators; advanced components for telecommunication circuits. Use of new CAD tools and systems. Units: 3
Catalog Description: Analysis, evaluation, and design of present-day integrated circuits for communications application, particularly those for which nonlinear response must be included. MOS, bipolar and BICMOS circuits, audio and video power amplifiers, optimum performance of near-sinusoidal oscillators and frequency-translation circuits. Phase-locked loop ICs, analog multipliers and voltage-controlled oscillators; advanced components for telecommunication circuits. Use of new CAD tools and systems. Units: 3 2ff7e9595c
Kommentare